Module IV: Statistical Techniques II – Complete Formulas with Clear Explanation

1. Basic Probability Concepts

Concept Formula / Definition Remarks
Probability of an event A P(A) = Number of favourable outcomes / Total outcomes (equally likely) 0 ≤ P(A) ≤ 1
Complement P(A') = 1 – P(A)
Addition Law P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
Multiplication Law (General) P(A ∩ B) = P(A) × P(B|A) = P(B) × P(A|B)
Independent events P(A ∩ B) = P(A) × P(B)
Conditional Probability P(A|B) = P(A ∩ B) / P(B)   (P(B) > 0)
Bayes’ Theorem P(A_i | B) = \frac{P(B|A_i) P(A_i)}{\sum P(B|A_i) P(A_i)} For partition A₁, A₂, …

2. Random Variables

Type Definition Probability Function
Discrete Random Variable Takes countable values (finite or countably infinite) PMF: p(x) = P(X = x)
Continuous Random Variable Takes uncountable values in an interval PDF: f(x) such that P(a ≤ X ≤ b) = \int_a^b f(x)\, dx
  • Properties of PMF: Σ p(x_i) = 1, p(x_i) ≥ 0
  • Properties of PDF: \int_{-\infty}^{\infty} f(x)\, dx = 1, f(x) ≥ 0

3. Expectation and Variance

Quantity Discrete Continuous
Expectation E(X) Σ x p(x) \int x f(x)\, dx
E[g(X)] Σ g(x) p(x) \int g(x) f(x)\, dx
Variance Var(X) E(X²) – [E(X)]² = Σ (x – μ)² p(x) \int (x – μ)² f(x)\, dx
Standard Deviation σ √Var(X) √Var(X)
E(aX + b) a E(X) + b a E(X) + b
Var(aX + b) a² Var(X) a² Var(X)

4. Important Discrete Distributions

Distribution PMF p(x) Conditions Mean μ Variance σ² Remarks / Use
Binomial \binom{n}{x} p^x (1-p)^{n-x} x = 0,1,…,n np np(1-p) Fixed n trials, success prob. p
Poisson e^{-\lambda} \lambda^x / x! x = 0,1,2,… \lambda \lambda Rare events, \lambda = np (limit of binomial)

Recurrence relations (useful in problems):

  • Binomial: p(x+1)/p(x) = \frac{(n-x)}{(x+1)} \cdot \frac{p}{1-p}
  • Poisson: p(x+1)/p(x) = \lambda/(x+1)

5. Normal Distribution (Continuous)

Property Formula
PDF f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[ -\frac{(x-\mu)^2}{2\sigma^2} \right]
Standard Normal (Z) Z = \frac{X - \mu}{\sigma} \sim N(0,1)
Mean \mu
Variance \sigma^2
Symmetry f(\mu + k) = f(\mu - k)
Linear transformation aX + b \sim N(a\mu + b, a^2\sigma^2)

Important probabilities (memorize or use table):

  • P(–1 ≤ Z ≤ 1) ≈ 0.6827 (68%)
  • P(–2 ≤ Z ≤ 2) ≈ 0.9545 (95%)
  • P(–3 ≤ Z ≤ 3) ≈ 0.9973 (99.7%)

Summary Table of All Key Distributions

Distribution Parameters Mean Variance PMF / PDF MGF (if required)
Binomial B(n,p) n, p np np(1–p) \binom{n}{x} p^x q^{n-x} (q + p e^t)^n
Poisson(λ) λ λ λ e^{-\lambda} \lambda^x / x! \exp[\lambda(e^t - 1)]
Normal N(μ,σ²) μ, σ² μ σ² \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \exp(\mu t + \sigma^2 t^2 / 2)

Quick Revision Formulas (Most Frequently Asked)

Concept Formula
Total Probability P(B) = Σ P(B|A_i) P(A_i)
Bayes’ Theorem P(A|B) = \frac{P(B|A) P(A)}{P(B)}
E(XY) for independent E(X) E(Y)
Binomial mean & variance np, npq
Poisson approximation to Binomial When n → ∞, p → 0, np = λ constant → Poisson(λ)
Normal approximation to Binomial X ∼ B(n,p) ≈ N(np, npq) when n large, np > 5, nq > 5
Continuity correction P(X = k) ≈ P(k–0.5 < Y < k+0.5) where Y ∼ Normal

These are all the essential formulas and concepts from Module IV (Probability & Distributions) as per most engineering/mathematics syllabi. Focus on solving numerical problems on Bayes’ theorem, expectation-variance calculation, and identification/application of Binomial Binomial/Poisson/Normal distributions for best exam performance.