Partial Differential Equations (PDEs) – Complete Formulas and Concepts with Clear Explanation

1. Origin of Partial Differential Equations

PDEs arise when a physical phenomenon depends on more than one independent variable (e.g., time t and space x, y, z).

Common examples:

  • Wave equation (vibration of string, sound waves):
    $$\dfrac{\partial^2 u}{\partial t^2} = c^2 \dfrac{\partial^2 u}{\partial x^2}$$
  • Heat conduction equation:
    $$\dfrac{\partial u}{\partial t} = \alpha \nabla^2 u = \alpha \left( \dfrac{\partial^2 u}{\partial x^2} + \dfrac{\partial^2 u}{\partial y^2} + \dfrac{\partial^2 u}{\partial z^2} \right)$$
  • Laplace equation (steady-state temperature, electrostatics):
    $$\nabla^2 u = 0 \Rightarrow \dfrac{\partial^2 u}{\partial x^2} + \dfrac{\partial^2 u}{\partial y^2} + \dfrac{\partial^2 u}{\partial z^2} = 0$$
  • Poisson equation: $$\nabla^2 u = f(x,y,z)$$

2. Classification: Linear, Semi-linear, Quasi-linear, Fully Nonlinear (First-Order PDEs)

A general first-order PDE in two independent variables:
$$F(x, y, u, p, q) = 0$$, where $$p = u_x$$, $$q = u_y$$.

Type Form Example
Linear $a(x,y,u) p + b(x,y,u) q = c(x,y,u)$ $x p + y q = u$
Semi-linear $a(x,y) p + b(x,y) q = c(x,y,u)$ $x p + y q = u^2$
Quasi-linear $a(x,y,u) p + b(x,y,u) q = c(x,y,u)$ $u p + q = 1$
Fully nonlinear Depends nonlinearly on $p$ and $q$ $p^2 + q^2 = 1$ (Eikonal equation)

3. Lagrange’s Method (Linear First-Order PDE)

Standard form:
$$P(x,y,u) \dfrac{\partial u}{\partial x} + Q(x,y,u) \dfrac{\partial u}{\partial y} = R(x,y,u)$$
or $$P p + Q q = R$$

Method of solution: Solve the auxiliary (characteristic) equations
$$\dfrac{dx}{P} = \dfrac{dy}{Q} = \dfrac{du}{R}$$

The general solution is $f(u_1, u_2) = 0$, where $u_1(x,y,u) = c_1$, $u_2(x,y,u) = c_2$ are two independent integrals.

Example: $x p + y q = z$ (homogeneous)
$$\dfrac{dx}{x} = \dfrac{dy}{y} = \dfrac{dz}{z} \Rightarrow \ln x = \ln y + c \Rightarrow \dfrac{x}{y} = c_1$$, and $$\dfrac{y}{z} = c_2$$
Solution: $$\dfrac{x}{y} = \phi\left(\dfrac{y}{z}\right)$$ or $$u = y\,\phi\left(\dfrac{x}{y}\right)$$

4. Charpit’s Method (Non-linear First-Order PDE)

For $f(x,y,u,p,q) = 0$

Charpit’s auxiliary equations:
$$\dfrac{dx}{f_p} = \dfrac{dy}{f_q} = \dfrac{du}{p f_p + q f_q} = \dfrac{dp}{-(f_x + p f_u)} = \dfrac{dq}{-(f_y + q f_u)} = -\dfrac{dp}{ds} \quad \text{(parameter } s\text{)}$$

Key step: Solve
$$\dfrac{dp}{f_p} = \dfrac{-dp}{(f_x + p f_u)} \Rightarrow f_p \, dp + (f_x + p f_u) \, dp = 0$$
i.e., $$f_p \, dp = -(f_x + p f_u) \, dp$$ → find relation between $p$ and other variables (say $p = \phi(x,y,u,a)$).

Then integrate again to eliminate $p$ and get complete integral.
Standard complete integral form: $$u = g(x,y,a,b)$$, containing two arbitrary constants $a,b$.

Example (Clairaut equation): $$u = x p + y q + f(p,q)$$
Complete integral: $$u = a x + b y + f(a,b)$$

5. Cauchy’s Method of Characteristics (General Non-linear First-Order)

Same as Charpit’s method in essence. The characteristic curves are given by the system:
$$\dfrac{dx}{dt} = f_p, \quad \dfrac{dy}{dt} = f_q, \quad \dfrac{du}{dt} = p f_p + q f_q, \quad \dfrac{dp}{dt} = -(f_x + p f_u), \quad \dfrac{dq}{dt} = -(f_y + q f_u)$$

6. Linear Homogeneous PDE with Constant Coefficients (Higher Order)

General form (two variables):
$$\left( D^m + a_1 D^{m-1} D' + a_2 D^{m-2} (D')^2 + \cdots + a_m (D')^m \right) u = 0$$
where $$D = \dfrac{\partial}{\partial x}$$, $$D' = \dfrac{\partial}{\partial y}$$

Solution method:
Replace $D \to m$, $D' \to 1$, get the auxiliary equation:
$$m^m + a_1 m^{m-1} + \cdots + a_m = 0$$

Let roots be $m_1, m_2, \dots$ (real or complex).

  • If root $m_i$ real and distinct → term $f_i(y + m_i x)$
  • Repeated root $m_i$ (multiplicity $k$) → $(y + m_i x)^{k-1} f(y + m_i x)$, etc.
  • Complex roots $\alpha \pm i\beta$ → $e^{\alpha x} [f_1(y) \cos(\beta x) + f_2(y) \sin(\beta x)]$

Important particular cases:

  1. $$\dfrac{\partial^n u}{\partial x^n} = 0 \Rightarrow u = f_1(y) + x f_2(y) + \cdots + \dfrac{x^{n-1}}{(n-1)!} f_n(y)$$
  2. One-factor theorem (factors do not repeat):
    If operator = $(D - m_1 D')(D - m_2 D')\cdots(D - m_n D')$
    Solution: $$u = f_1(y + m_1 x) + f_2(y + m_2 x) + \cdots + f_n(y + m_n x)$$

7. Non-homogeneous Linear PDE with Constant Coefficients

Right-hand side = known function $f(x,y)$

Method:

  1. Find complementary function (CF) = solution of homogeneous equation (as above).
  2. Particular integral (PI) using standard rules:
Form of $f(x,y)$ Try PI of form Multiply by $x^k$ if factor repeats
Polynomial in $x,y$ of degree $n$ Same polynomial (unknown coefficients) Yes
$e^{ax+by}$ $A e^{ax+by}$ If $(D - a - b D')^{k}$ factor
$\sin(ax+by)$ or $\cos(ax+by)$ $A \cos(ax+by) + B \sin(ax+by)$ Yes
$x^m (y + kx)^n$ Use shift: replace operator by substituting $y + kx = \eta$

Operator rule: PI = $\dfrac{1}{f(D,D')} g(x,y)$

8. Equations Reducible to Linear with Constant Coefficients

Common cases:

  1. Change of independent variables to make coefficients constant
    Example: Cauchy-Euler type in PDEs
    $$\left( x^2 D^2 + 2x y D D' + y^2 (D')^2 \right) u = 0$$
    Put $x = e^\xi$, $y = e^\eta$ → becomes constant coefficient.
  2. Equations with variable coefficients reducible by substitution
    • $x \dfrac{\partial u}{\partial x} + y \dfrac{\partial u}{\partial y} = u$ → put $u = v \ln x$ or use $x = e^\xi$ etc.
    • General rule: If operator is function of $(x D + y D')$, assume $u = x^k v$ or use logarithmic coordinates.

Summary of Key Formulas

Topic Key Formula / Result
Lagrange linear PDE $$\dfrac{dx}{P} = \dfrac{dy}{Q} = \dfrac{du}{R}$$
Charpit’s relation for p $$f_p \, dp + (f_x + p f_u) \, dp = 0$$
Homogeneous linear constant coeff Auxiliary: replace $D \to m$, solve $m$-equation
PI for $e^{ax+by} g(x,y)$ $$\dfrac{1}{D + c D' - (a + b c)} e^{ax+by} g(x,y)$$ (if no repetition)
Repeated linear factor Multiply PI by $x^k$ ($k$ = multiplicity)

This covers the entire syllabus of Module I with all standard methods and formulas used in examinations. Practice solving previous years’ problems using these exact steps.