Unit-IV: Magnetic & Electrical Properties of Materials

Unit-IV: Magnetic & Electrical Properties + Superconductivity

Unit-IV: Magnetic & Electrical Properties of Materials
+ Superconductivity

1. Magnetic Properties of Materials

Types of Magnetism

TypeBehavior in External FieldMagnetic Susceptibility (χ)Examples
DiamagneticWeakly repelledSmall negative (–10⁻⁵)Cu, Au, Ag, Water, NaCl, Superconductors
ParamagneticWeakly attractedSmall positive (+10⁻³ to 10⁻⁵)Al, Mg, O₂, Pt
FerromagneticStrongly attractedVery large positive (>1000)Fe, Co, Ni, Gd
AntiferromagneticNo net magnetismSmall positiveMnO, FeO, Cr
FerrimagneticNet magnetism (partial cancellation)LargeFerrites (Fe₃O₄), Magnetite

Hysteresis Loop (B-H Curve)

  • B = Magnetic induction, H = Magnetic field strength
  • Key points:
    • Retentivity (Br): Remaining magnetism after removing H
    • Coercivity (Hc): Field needed to demagnetize
    • Saturation magnetization: Maximum B

Soft vs Hard Magnetic Materials

PropertySoft MagneticHard Magnetic
CoercivityLowHigh
Hysteresis lossLowHigh
Area of loopNarrowWide
ExamplesPure Fe, Si-steel, PermalloyAlnico, NdFeB, SmCo, Hard ferrite
ApplicationsTransformers, motors, relaysPermanent magnets, speakers, MRI

Magnetic Storage

  • Hard disk → Magnetic domains store bits
  • Magnetic tape, MRAM, etc.

2. Electrical & Electronic Properties

Energy Band Theory

MaterialBand Gap (Eg)ConductionExamples
Conductor0 eV (overlapping bands)High (10⁷ S/m)Cu, Ag, Al
Semiconductor0.1 – 3 eVModerateSi (1.1 eV), Ge (0.67 eV), GaAs
Insulator> 5 eVVery low (<10⁻¹⁰ S/m)Diamond (5.5 eV), Glass

Intrinsic vs Extrinsic Semiconductors

  • Intrinsic: Pure Si/Ge → n = p = nᵢ (electrons = holes)
  • Extrinsic (Doping):
    • n-type: Group V (P, As) → Extra electrons (majority carriers)
    • p-type: Group III (B, Ga) → Holes (majority carriers)

P-N Junction & Devices

  • Forward bias → Current flows (LED, Diode)
  • Reverse bias → No current (except leakage)
  • Transistor:
    • BJT (NPN/PNP) → Current amplifier
    • MOSFET → Voltage-controlled switch
  • Applications: Rectifiers, Amplifiers, Switches, Solar cells, ICs

Diffusion in Solids

  • Fick’s 1st law: J = –D (dc/dx)
  • Fick’s 2nd law: For non-steady state
  • Important in doping, carburizing, oxidation, etc.

3. Superconductivity

Key Features

  • Zero electrical resistance below Tc (critical temperature)
  • Perfect diamagnetism → Meissner Effect (expulsion of magnetic field)

Type-I vs Type-II Superconductors

PropertyType-IType-II
Meissner effectComplete up to HcComplete up to Hc1, partial (vortex state) till Hc2
TransitionAbruptGradual
ExamplesPure metals (Pb, Hg, Sn)Alloys & high-Tc (NbTi, Nb₃Sn, YBCO)
ApplicationsLimitedMRI magnets, power cables, Maglev

High-Tc Superconductors

  • Discovered 1986 (Bednorz & Müller – Nobel 1987)
  • Ceramic cuprates: YBa₂Cu₃O₇ (YBCO) → Tc = 92 K (liquid N₂ cooling)
  • BSCCO, TBCCO → Tc > 100 K
  • Advantages: Can be cooled with liquid nitrogen (77 K) instead of liquid He (4.2 K)

Applications of Superconductivity

  • MRI machines (NbTi magnets)
  • Maglev trains
  • Power transmission cables (zero loss)
  • SQUID (Superconducting Quantum Interference Device) → Ultra-sensitive magnetic sensors
  • Particle accelerators (LHC)

Quick Revision Table – Unit IV

TopicKey Points
Dia / Para / Ferroχ negative / small +ve / large +ve
Soft MagnetLow Hc → Transformers
Hard MagnetHigh Hc → Permanent magnets
Conductor / SC / InsulatorEg = 0 / 0.1–3 / >5 eV
n-type / p-typePentavalent / Trivalent dopant
SuperconductivityR = 0, Meissner effect
Type-II SCUsed in high-field magnets (MRI)
High TcYBCO (92K), liquid N₂ cooled

Unit-IV Complete! Save as HTML and revise on phone/laptop.
Best of luck for your exam!