Unit-2: Laplace Transform - Complete Formulas & Examples

Unit-2: Laplace Transform (Complete Theory + Formulas + Solved Examples)

1. Definition of Laplace Transform

\[ \mathcal{L}\{f(t)\} = F(s) = \int_{0}^{\infty} e^{-st} f(t) \, dt \quad (s > \sigma) \]

2. Existence Theorem

Laplace transform exists if:
  • f(t) is piecewise continuous on [0, ∞)
  • f(t) is of exponential order: |f(t)| ≤ M e^{αt} for t > T

3. Standard Laplace Transforms (Important Table)

f(t)\(\mathcal{L}\{f(t)\}\)
1\(\frac{1}{s}\)
t\(\frac{1}{s^2}\)
t^n\(\frac{n!}{s^{n+1}}\)
e^{at}\(\frac{1}{s - a}\)
\sin at\(\frac{a}{s^2 + a^2}\)
\cos at\(\frac{s}{s^2 + a^2}\)
\sinh at\(\frac{a}{s^2 - a^2}\)
\cosh at\(\frac{s}{s^2 - a^2}\)
t f(t)\(-\frac{d}{ds} F(s)\)

4. Properties of Laplace Transform

PropertyTime DomainLaplace Domain
First Shiftinge^{at} f(t)F(s - a)
Second Shiftingf(t - a) u(t - a)e^{-as} F(s)
Multiplication by tt f(t)-F'(s)
Multiplication by t^nt^n f(t)(-1)^n F^{(n)}(s)
Division by t\(\frac{f(t)}{t}\)\(\int_s^\infty F(s) \, ds\)
Differentiationf'(t)s F(s) - f(0)
f''(t)s^2 F(s) - s f(0) - f'(0)
f^{(n)}(t)s^n F(s) - s^{n-1} f(0) - \cdots - f^{(n-1)}(0)
Integration\(\int_0^t f(\tau) d\tau\)\(\frac{F(s)}{s}\)

5. Unit Step Function (Heaviside Function)

\[ u(t - a) = \begin{cases} 0 & t < a \\ 1 & t \geq a \end{cases} \] \[ \mathcal{L}\{u(t - a)\} = \frac{e^{-as}}{s} \] \[ \mathcal{L}\{f(t - a) u(t - a)\} = e^{-as} F(s) \]

6. Laplace Transform of Periodic Function

If f(t) has period T, then: \[ \mathcal{L}\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) \, dt \]

7. Inverse Laplace Transform

\[ f(t) = \mathcal{L}^{-1}\{F(s)\} \] Using partial fractions, standard forms, properties.

8. Convolution Theorem

\[ \mathcal{L}\{f(t) * g(t)\} = F(s) G(s) \] where \( (f * g)(t) = \int_0^t f(\tau) g(t - \tau) d\tau \)
\[ \mathcal{L}^{-1}\{F(s) G(s)\} = f(t) * g(t) \]
Example 1: Solve y'' + 4y = sin 2t, y(0)=1, y'(0)=0
Take LT:
\( s^2 Y - s + 4Y = \frac{2}{s^2 + 4} \)
\( Y(s) = \frac{s}{s^2 + 4} + \frac{2}{(s^2 + 4)^2} \)
\( \mathcal{L}^{-1}\left\{\frac{s}{s^2 + 4}\right\} = \cos 2t \)
\( \mathcal{L}^{-1}\left\{\frac{2}{(s^2 + 4)^2}\right\} = \sin 2t - 2t \cos 2t \) (using known form)
y(t) = \cos 2t + \frac{1}{2} (\sin 2t - 2t \cos 2t)
Example 2 (With Unit Step): Solve y' + y = f(t), y(0)=0 where f(t) = { 1 (02) }
f(t) = u(t) - u(t-2)
LT: sY + Y = \frac{1 - e^{-2s}}{s}
Y(s) = \frac{1 - e^{-2s}}{s(s+1)} = \frac{1}{s(s+1)} - \frac{e^{-2s}}{s(s+1)}
Partial: \frac{1}{s(s+1)} = 1 - \frac{1}{s+1}
y(t) = (1 - e^{-t}) - (1 - e^{-(t-2)}) u(t-2)
Example 3 (Convolution): Solve y' - 2y = sin t, y(0)=0
Y(s)(s - 2) = \frac{1}{s^2 + 1}
Y(s) = \frac{1}{(s-2)(s^2 + 1)}
Using convolution: solution is ∫ e^{2τ} sin(t - τ) dτ from 0 to t
Or partial fractions:
y(t) = \frac{1}{5} (2 \sin t - \cos t + e^{2t})
Example 4 (Simultaneous DEs):
x' = 3x + y
y' = x + 3y, x(0)=4, y(0)=1
LT:
sX - 4 = 3X + Y
sY - 1 = X + 3Y
(s-3)X - Y = 4
-X + (s-3)Y = 1
Solve: X(s) = \frac{4s - 13}{(s-3)^2 - 1} = \frac{4s-13}{s^2 - 6s + 8}
= \frac{4s-13}{(s-2)(s-4)} → partial → X(s) = \frac{5}{s-2} - \frac{1}{s-4}
x(t) = 5e^{2t} - e^{4t}, y(t) = -5e^{2t} + 6e^{4t}

Summary of Key Inverse Transforms

F(s)f(t)
\(\frac{1}{(s+a)^n}\)\(\frac{t^{n-1} e^{-at}}{(n-1)!}\)
\(\frac{s}{(s+a)^2 + b^2}\)e^{-at} \cos bt
\(\frac{b}{(s+a)^2 + b^2}\)e^{-at} \sin bt
\(\frac{1}{s(s^2 + k^2)}\)\(\frac{1}{k^2} (1 - \cos kt)\)
\(\frac{1}{(s^2 + k^2)^2}\)\(\frac{\sin kt - kt \cos kt}{2k^3}\)