Unit-1: Ordinary Differential Equations of Higher Order
Unit-1: Ordinary Differential Equations of Higher Order
1. Linear Differential Equation of nth Order with Constant Coefficients
General form:
\[ a_n \frac{d^ny}{dx^n} + a_{n-1} \frac{d^{n-1}y}{dx^n} + \cdots + a_1 \frac{dy}{dx} + a_0 y = X(x) \]Auxiliary equation for homogeneous part (\(X(x) = 0\)):
\[ a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + a_0 = 0 \]Complementary Function (CF) depends on roots:
- Real and distinct roots \(m_1, m_2, \dots, m_n\): \[ y_c = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \cdots + c_n e^{m_n x} \]
- Repeated root \(m\) of multiplicity \(k\): \[ y_c = (c_1 + c_2 x + c_3 x^2 + \cdots + c_k x^{k-1}) e^{m x} \]
- Complex roots \(\alpha \pm i\beta\): \[ y_c = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x) \]
Particular Integral (PI) for different forms of \(X(x)\):
| \(X(x)\) | Form of PI |
|---|---|
| \(e^{ax}\) | \(y_p = A e^{ax}\) (unless \(a\) is a root → multiply by \(x^k\)) |
| \(\sin ax\) or \(\cos ax\) | \(y_p = A \cos ax + B \sin ax\) |
| Polynomial of degree \(n\): \(p(x)\) | \(y_p = a_n x^n + \cdots + a_0\) (multiply by \(x^k\) if 0 is root \(k\) times) |
| \(x^m e^{ax}\) | \(y_p = x^k (a_m x^m + \cdots + a_0) e^{ax}\) |
| \(e^{ax} (A \cos bx + B \sin bx)\) | \(y_p = x^k e^{ax} (C \cos bx + D \sin bx)\) |
2. Simultaneous Linear Differential Equations
Example system:
\[ \frac{dx}{dt} + P x + Q y = f_1(t) \] \[ \frac{dy}{dt} + R x + S y = f_2(t) \]Operator method (using \(D = \frac{d}{dt}\)):
\[ (D + P)x + Q y = f_1(t) \] \[ R x + (D + S)y = f_2(t) \]Solve using elimination or substitution after treating as algebraic equations in \(D\).
3. Second-Order Linear DE with Variable Coefficients
General form:
\[ \frac{d^2 y}{dx^2} + P(x) \frac{dy}{dx} + Q(x) y = R(x) \]4. Solution by Changing Independent Variable
Used when equation lacks \(y\) or \(x\):
- If missing \(y\) → let \(v = \frac{dy}{dx}\), then \(\frac{d^2 y}{dx^2} = v \frac{dv}{dy}\)
- If missing \(x\) → let \(v = \frac{dy}{dx}\), then \(\frac{d^2 y}{dx^2} = \frac{dv}{dx} = \frac{dv}{dy} \cdot \frac{dy}{dx} = v \frac{dv}{dy}\)
5. Method of Variation of Parameters (2nd Order)
For \( y'' + P y' + Q y = R(x) \), assume:
\[ y_p = u_1 y_1 + u_2 y_2 \] where \(y_1, y_2\) are fundamental solutions.System:
\[ u_1' y_1 + u_2' y_2 = 0 \] \[ u_1' y_1' + u_2' y_2' = R(x) \]Solution using Wronskian \(W = y_1 y_2' - y_2 y_1'\):
\[ u_1' = -\frac{y_2 R(x)}{W}, \quad u_2' = \frac{y_1 R(x)}{W} \] \[ u_1 = \int -\frac{y_2 R}{W} dx, \quad u_2 = \int \frac{y_1 R}{W} dx \]6. Cauchy-Euler (Equidimensional) Equation
Standard form:
\[ a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_1 x \frac{dy}{dx} + a_0 y = X(x) \]Substitution: let \( x = e^t \) → \( t = \ln x \), then:
\[ y = y(t), \quad x \frac{dy}{dx} = \frac{dy}{dt}, \quad x^2 \frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2} - \frac{dy}{dt} \]For homogeneous 2nd order:
\[ a x^2 y'' + b x y' + c y = 0 \] Auxiliary equation: \[ a m(m-1) + b m + c = 0 \]Cases:
- Roots \(m_1 \neq m_2\): \( y = c_1 x^{m_1} + c_2 x^{m_2} \)
- Repeated root \(m\): \( y = (c_1 + c_2 \ln x) x^m \)
- Complex roots \(\alpha \pm i\beta\): \( y = x^\alpha (c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x)) \)
7. Applications in Engineering
- Mechanical Vibrations (Free): \( m \frac{d^2 x}{dt^2} + k x = 0 \) → \( \omega = \sqrt{k/m} \)
- Damped Vibrations: \( m \ddot{x} + c \dot{x} + k x = 0 \)
Discriminant: \( \Delta = c^2 - 4mk \) - Forced Vibrations: \( m \ddot{x} + c \dot{x} + k x = F_0 \cos \omega t \)
- RLC Circuit: \( L \frac{d^2 q}{dt^2} + R \frac{dq}{dt} + \frac{1}{C} q = E(t) \)
- Beam Deflection: \( EI \frac{d^4 y}{dx^4} = w(x) \)