Visualize Quick Sort partitions
COMPLETE VISUALIZATION OF QUICK SORT PARTITIONS
COMPLETE VISUALIZATION OF QUICK SORT PARTITIONS
COMPLETE VISUALIZATION OF QUICK SORT PARTITIONS
Same Array: 45, 12, 78, 23, 56, 9, 67, 34, 89, 41
Pivot Rule: Always last element as pivot
Partition Style: Lomuto partition (standard in textbooks)
FULL STEP-BY-STEP PARTITION TREE + ARRAY SNAPSHOTS
Initial Array
Index: 0 1 2 3 4 5 6 7 8 9
Value: 45 12 78 23 56 9 67 34 89 41 ← pivot = 41
Level 1: Pivot = 41 → Partition whole array
After partition: ≤41 41 >41
12 23 9 34 [41] 45 78 56 67 89
Level 2: Two sub-arrays to sort
Left side (0–3): 12 23 9 34 ← pivot = 34
Right side (5–9): 45 78 56 67 89 ← pivot = 89
Level 2 Left: Partition [12, 23, 9, 34]
After partition: ≤34 34
12 23 9 [34] 45 78 56 67 89
Level 2 Right: Partition [45, 78, 56, 67, 89]
After partition: ≤89 89
45 78 56 67 [89]
Level 3: Continue…
From left of 34: [12, 23, 9] ← pivot = 9
After partition: 9 then 12 23
[9] 12 23 [34] 45 78 56 67 [89]
From right of 89: [45, 78, 56, 67] ← pivot = 67
After partition: ≤67 67 >67
45 56 [67] 78 [89]
Final small partitions
[45, 56] → pivot 56 → 45 [56] 67 78 89
[12, 23] → pivot 23 → 12 [23]
FULL VISUAL EVOLUTION (Like Animation)
| Step | Current Subarray | Pivot | After Partition | Remarks |
|---|---|---|---|---|
| 1 | [45 12 78 23 56 9 67 34 89 41] | 41 | 12 23 9 34 [41] 45 78 56 67 89 | 1st partition |
| 2 | [12 23 9 34] | 34 | 12 23 9 [34] 41 45 78 56 67 89 | Left side |
| 3 | [45 78 56 67 89] | 89 | 45 78 56 67 [89] | Right side |
| 4 | [12 23 9] | 9 | [9] 12 23 34 41 45 78 56 67 89 | Smallest left |
| 5 | [12 23] | 23 | 12 [23] 34 41 45 78 56 67 89 | Done |
| 6 | [45 78 56 67] | 67 | 45 56 [67] 78 89 | Right middle |
| 7 | [45 56] | 56 | 45 [56] 67 78 89 | Final small |
FINAL SORTED ARRAY
9 12 23 34 41 45 56 67 78 89
PARTITION TREE (Draw This in Exam!)
[45 ... 41]
│
pivot = 41
/ \
[12 23 9 34] [45 78 56 67 89]
│ │
pivot=34 pivot=89
/ \ │
[12 23 9] (empty) [45 78 56 67]
│ │
pivot=9 pivot=67
/ \ / \
(empty) [12 23] [45 56] [78]
│ │ │ │
pivot=23 pivot=56 (single)
Bar Graph Evolution (Quick Sort)
Initial: After 1st: After 2nd: Final:
89 89 89 89
78 78 78 78 78 78 78
67 67 67 67 67 67 67
56 56 56 56 56 56
45 45 45 45 45 45
41 41
34 34 34 34
23 23 23 23 23 23 23
12 12 12 12 12 12
9 9 9 9 9 9 9
────────────────────────────────────────────────────────→
Random → Pivot 41 placed → More structure → Fully sorted
Summary: Quick Sort vs Shell Sort (Same Array)
| Metric | Quick Sort | Shell Sort |
|---|---|---|
| Number of swaps | ~20 | Only 9 |
| Number of comparisons | ~50 | ~65 |
| Elements moved far | Yes (9 → front) | Yes (gradually) |
| Final pass work | Almost done | Very little |
| Recursion depth | 6–7 levels | None |
| Cache friendliness | Poor (jumping) | Excellent |
Quick Sort → jumps around, but places pivot perfectly forever
Shell Sort → moves gently, step by step, no recursion
Now you can draw the full partition tree and evolution in your exam answer book and get full marks!
Want this as a single printable page/image? Just say!
Visualize Quick Sort partitions
COMPLETE VISUALIZATION OF QUICK SORT PARTITIONS
COMPLETE VISUALIZATION OF QUICK SORT PARTITIONS
COMPLETE VISUALIZATION OF QUICK SORT PARTITIONS
Same Array: 45, 12, 78, 23, 56, 9, 67, 34, 89, 41
Pivot Rule: Always last element as pivot
Partition Style: Lomuto partition (standard in textbooks)
FULL STEP-BY-STEP PARTITION TREE + ARRAY SNAPSHOTS
Initial Array
Index: 0 1 2 3 4 5 6 7 8 9
Value: 45 12 78 23 56 9 67 34 89 41 ← pivot = 41
Level 1: Pivot = 41 → Partition whole array
After partition: ≤41 41 >41
12 23 9 34 [41] 45 78 56 67 89
Level 2: Two sub-arrays to sort
Left side (0–3): 12 23 9 34 ← pivot = 34
Right side (5–9): 45 78 56 67 89 ← pivot = 89
Level 2 Left: Partition [12, 23, 9, 34]
After partition: ≤34 34
12 23 9 [34] 45 78 56 67 89
Level 2 Right: Partition [45, 78, 56, 67, 89]
After partition: ≤89 89
45 78 56 67 [89]
Level 3: Continue…
From left of 34: [12, 23, 9] ← pivot = 9
After partition: 9 then 12 23
[9] 12 23 [34] 45 78 56 67 [89]
From right of 89: [45, 78, 56, 67] ← pivot = 67
After partition: ≤67 67 >67
45 56 [67] 78 [89]
Final small partitions
[45, 56] → pivot 56 → 45 [56] 67 78 89
[12, 23] → pivot 23 → 12 [23]
FULL VISUAL EVOLUTION (Like Animation)
| Step | Current Subarray | Pivot | After Partition | Remarks |
|---|---|---|---|---|
| 1 | [45 12 78 23 56 9 67 34 89 41] | 41 | 12 23 9 34 [41] 45 78 56 67 89 | 1st partition |
| 2 | [12 23 9 34] | 34 | 12 23 9 [34] 41 45 78 56 67 89 | Left side |
| 3 | [45 78 56 67 89] | 89 | 45 78 56 67 [89] | Right side |
| 4 | [12 23 9] | 9 | [9] 12 23 34 41 45 78 56 67 89 | Smallest left |
| 5 | [12 23] | 23 | 12 [23] 34 41 45 78 56 67 89 | Done |
| 6 | [45 78 56 67] | 67 | 45 56 [67] 78 89 | Right middle |
| 7 | [45 56] | 56 | 45 [56] 67 78 89 | Final small |
FINAL SORTED ARRAY
9 12 23 34 41 45 56 67 78 89
PARTITION TREE (Draw This in Exam!)
[45 ... 41]
│
pivot = 41
/ \
[12 23 9 34] [45 78 56 67 89]
│ │
pivot=34 pivot=89
/ \ │
[12 23 9] (empty) [45 78 56 67]
│ │
pivot=9 pivot=67
/ \ / \
(empty) [12 23] [45 56] [78]
│ │ │ │
pivot=23 pivot=56 (single)
Bar Graph Evolution (Quick Sort)
Initial: After 1st: After 2nd: Final:
89 89 89 89
78 78 78 78 78 78 78
67 67 67 67 67 67 67
56 56 56 56 56 56
45 45 45 45 45 45
41 41
34 34 34 34
23 23 23 23 23 23 23
12 12 12 12 12 12
9 9 9 9 9 9 9
────────────────────────────────────────────────────────→
Random → Pivot 41 placed → More structure → Fully sorted
Summary: Quick Sort vs Shell Sort (Same Array)
| Metric | Quick Sort | Shell Sort |
|---|---|---|
| Number of swaps | ~20 | Only 9 |
| Number of comparisons | ~50 | ~65 |
| Elements moved far | Yes (9 → front) | Yes (gradually) |
| Final pass work | Almost done | Very little |
| Recursion depth | 6–7 levels | None |
| Cache friendliness | Poor (jumping) | Excellent |
Quick Sort → jumps around, but places pivot perfectly forever
Shell Sort → moves gently, step by step, no recursion
Now you can draw the full partition tree and evolution in your exam answer book and get full marks!
Want this as a single printable page/image? Just say!