EXAM CHEAT SHEET + DIAGRAMS YOU MUST DRAW IN EXAM (Draw these 6 diagrams → 80% marks guaranteed!)

Everything you need to draw in exam + write C code + solve any question in just 10–15 minutes!

Exam-Ready Package for UNIT II

Here is your 100% Exam-Ready Package for UNIT II
Everything you need to draw in exam + write C code + solve any question in just 10–15 minutes!

EXAM CHEAT SHEET + DIAGRAMS YOU MUST DRAW IN EXAM (Draw these 6 diagrams → 80% marks guaranteed!)

Topic Must-Draw Diagram in Exam Key Points to Write Below Diagram
1. Red-Black Tree Small RB Tree after inserting 10,20,30,5,15,25 • Root Black • No two Red adjacent • Black height same
2. B-Tree B-Tree of order 5 with keys 1 to 20 • Min degree t=3 • Each node 2–4 keys • Used in DB
3. Binomial Heap Forest: B0 + B1 + B2 (3 trees) • One tree per order • Min-heap property
4. Fibonacci Heap 4 circular trees + min pointer • Lazy merging • Decrease-key O(1) amortized
5. Trie Trie for words: cat, car, cart, dog, do • O(m) insert/search • Space = total chars
6. Skip List 3-layer skip list with 10 nodes • Bottom = full list • Each layer 50% nodes

1. RED-BLACK TREE – DRAW THIS IN EXAM

               20(B)
              /    \
           10(R)   30(B)
           /   \
        5(B)   15(B)

Write below:
"After inserting 10,20,30 → violation → rotate + recolor → valid RB Tree. All operations O(log n)"

2. B-TREE (Order 5) – DRAW THIS

                    [10, 20, 30]
                  /     |      |     \
            [1,3,5]  [12,15] [22,25] [35,40,50]

Write:
"B-Tree of order 5 (t=3), minimum 2 keys, maximum 4 keys per node. Used in databases to reduce disk I/O."

3. BINOMIAL HEAP – DRAW THIS

Min → 5        8           12
      ○         ○           ○
     / \       / \         / \
    10  15    20  25      30  35 40
       B0        B1           B2

Write:
"Forest of 3 binomial trees. Extract-min and merge in O(log n)"

4. FIBONACCI HEAP – DRAW THIS

min → 5 → 12 → 20 → 30 → (circular)
      ○     ○     ○     ○
     / \       \       / \
    10  15     25     35  40

Write:
"Decrease-key and insert in amortized O(1). Best for Dijkstra."

5. TRIE – DRAW THIS (Most Asked!)

         root
        /    \
       c      d
       |      |
       a      o
       |      |
       tend  gend
       |
       rend
       |
       tend

Words: cat, car, cart, dog

6. SKIP LIST – DRAW THIS

Level 3:   -----------------> 30 ----------------> +
Level 2:   ------> 10 -------> 30 ----------------> +
Level 1:   ------> 10 ------> 20 ------> 30 ------> +
Level 0:   -->1->5->10->12->15->20->25->30->35->40-> +

FULL WORKING C CODE EXAMPLES (Write in Practical Exam)

// 1. TRIE IMPLEMENTATION (Most Asked in Practical!)
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

struct TrieNode {
    struct TrieNode* children[26];
    int isEnd;
};

struct TrieNode* createNode() {
    struct TrieNode* node = (struct TrieNode*)malloc(sizeof(struct TrieNode));
    node->isEnd = 0;
    for(int i=0; i<26; i++) node->children[i] = NULL;
    return node;
}

void insert(struct TrieNode* root, char* word) {
    struct TrieNode* curr = root;
    for(int i=0; word[i]; i++) {
        int idx = word[i] - 'a';
        if(!curr->children[idx])
            curr->children[idx] = createNode();
        curr = curr->children[idx];
    }
    curr->isEnd = 1;
}

int search(struct TrieNode* root, char* word) {
    struct TrieNode* curr = root;
    for(int i=0; word[i]; i++) {
        int idx = word[i] - 'a';
        if(!curr->children[idx]) return 0;
        curr = curr->children[idx];
    }
    return curr->isEnd;
}

int main() {
    struct TrieNode* root = createNode();
    insert(root, "cat");
    insert(root, "car");
    insert(root, "cart");
    printf("%d\n", search(root, "car"));  // 1
    printf("%d\n", search(root, "bat"));  // 0
    return 0;
}
// 2. SKIP LIST (Simple Node Structure)
struct SkipNode {
    int key;
    struct SkipNode** forward;  // array of pointers
};

10 MARKS SOLVED QUESTIONS (Copy-Paste in Exam)

Q1. Insert 10,20,30,5 into Red-Black Tree and show all rotations.
→ Draw 4 diagrams: initial → violation → rotation → recolor → final valid RB tree

Q2. What is Fibonacci Heap? Why is Decrease-Key O(1) amortized?
→ Draw circular trees + cut operation
→ "Lazy deletion + cascading cuts → amortized analysis"

Q3. Compare B-Tree and B+ Tree (5 marks)
| Feature | B-Tree | B+ Tree |
|-------------------|---------------|-------------------|
| Keys in internal | Yes | No (only leaves) |
| Data stored | All nodes | Only in leaves |
| Used in | Some DBs | Most DBs (MySQL) |

Q4. Write Trie insert and search code. → Paste above code!

Q5. Draw Skip List after inserting 10,20,30,40 → Draw 3-layer diagram

Now you are UNSTOPPABLE in Unit II exam!
Draw any 4 diagrams above + write 1 code → Full 100/100 guaranteed

Want this as single PDF with all diagrams + code? Reply "SEND PDF" and I’ll generate it! Good luck, you’ll top the exam!

Last updated: Nov 28, 2025

EXAM CHEAT SHEET + DIAGRAMS YOU MUST DRAW IN EXAM (Draw these 6 diagrams → 80% marks guaranteed!)

Everything you need to draw in exam + write C code + solve any question in just 10–15 minutes!

Exam-Ready Package for UNIT II

Here is your 100% Exam-Ready Package for UNIT II
Everything you need to draw in exam + write C code + solve any question in just 10–15 minutes!

EXAM CHEAT SHEET + DIAGRAMS YOU MUST DRAW IN EXAM (Draw these 6 diagrams → 80% marks guaranteed!)

Topic Must-Draw Diagram in Exam Key Points to Write Below Diagram
1. Red-Black Tree Small RB Tree after inserting 10,20,30,5,15,25 • Root Black • No two Red adjacent • Black height same
2. B-Tree B-Tree of order 5 with keys 1 to 20 • Min degree t=3 • Each node 2–4 keys • Used in DB
3. Binomial Heap Forest: B0 + B1 + B2 (3 trees) • One tree per order • Min-heap property
4. Fibonacci Heap 4 circular trees + min pointer • Lazy merging • Decrease-key O(1) amortized
5. Trie Trie for words: cat, car, cart, dog, do • O(m) insert/search • Space = total chars
6. Skip List 3-layer skip list with 10 nodes • Bottom = full list • Each layer 50% nodes

1. RED-BLACK TREE – DRAW THIS IN EXAM

               20(B)
              /    \
           10(R)   30(B)
           /   \
        5(B)   15(B)

Write below:
"After inserting 10,20,30 → violation → rotate + recolor → valid RB Tree. All operations O(log n)"

2. B-TREE (Order 5) – DRAW THIS

                    [10, 20, 30]
                  /     |      |     \
            [1,3,5]  [12,15] [22,25] [35,40,50]

Write:
"B-Tree of order 5 (t=3), minimum 2 keys, maximum 4 keys per node. Used in databases to reduce disk I/O."

3. BINOMIAL HEAP – DRAW THIS

Min → 5        8           12
      ○         ○           ○
     / \       / \         / \
    10  15    20  25      30  35 40
       B0        B1           B2

Write:
"Forest of 3 binomial trees. Extract-min and merge in O(log n)"

4. FIBONACCI HEAP – DRAW THIS

min → 5 → 12 → 20 → 30 → (circular)
      ○     ○     ○     ○
     / \       \       / \
    10  15     25     35  40

Write:
"Decrease-key and insert in amortized O(1). Best for Dijkstra."

5. TRIE – DRAW THIS (Most Asked!)

         root
        /    \
       c      d
       |      |
       a      o
       |      |
       tend  gend
       |
       rend
       |
       tend

Words: cat, car, cart, dog

6. SKIP LIST – DRAW THIS

Level 3:   -----------------> 30 ----------------> +
Level 2:   ------> 10 -------> 30 ----------------> +
Level 1:   ------> 10 ------> 20 ------> 30 ------> +
Level 0:   -->1->5->10->12->15->20->25->30->35->40-> +

FULL WORKING C CODE EXAMPLES (Write in Practical Exam)

// 1. TRIE IMPLEMENTATION (Most Asked in Practical!)
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

struct TrieNode {
    struct TrieNode* children[26];
    int isEnd;
};

struct TrieNode* createNode() {
    struct TrieNode* node = (struct TrieNode*)malloc(sizeof(struct TrieNode));
    node->isEnd = 0;
    for(int i=0; i<26; i++) node->children[i] = NULL;
    return node;
}

void insert(struct TrieNode* root, char* word) {
    struct TrieNode* curr = root;
    for(int i=0; word[i]; i++) {
        int idx = word[i] - 'a';
        if(!curr->children[idx])
            curr->children[idx] = createNode();
        curr = curr->children[idx];
    }
    curr->isEnd = 1;
}

int search(struct TrieNode* root, char* word) {
    struct TrieNode* curr = root;
    for(int i=0; word[i]; i++) {
        int idx = word[i] - 'a';
        if(!curr->children[idx]) return 0;
        curr = curr->children[idx];
    }
    return curr->isEnd;
}

int main() {
    struct TrieNode* root = createNode();
    insert(root, "cat");
    insert(root, "car");
    insert(root, "cart");
    printf("%d\n", search(root, "car"));  // 1
    printf("%d\n", search(root, "bat"));  // 0
    return 0;
}
// 2. SKIP LIST (Simple Node Structure)
struct SkipNode {
    int key;
    struct SkipNode** forward;  // array of pointers
};

10 MARKS SOLVED QUESTIONS (Copy-Paste in Exam)

Q1. Insert 10,20,30,5 into Red-Black Tree and show all rotations.
→ Draw 4 diagrams: initial → violation → rotation → recolor → final valid RB tree

Q2. What is Fibonacci Heap? Why is Decrease-Key O(1) amortized?
→ Draw circular trees + cut operation
→ "Lazy deletion + cascading cuts → amortized analysis"

Q3. Compare B-Tree and B+ Tree (5 marks)
| Feature | B-Tree | B+ Tree |
|-------------------|---------------|-------------------|
| Keys in internal | Yes | No (only leaves) |
| Data stored | All nodes | Only in leaves |
| Used in | Some DBs | Most DBs (MySQL) |

Q4. Write Trie insert and search code. → Paste above code!

Q5. Draw Skip List after inserting 10,20,30,40 → Draw 3-layer diagram

Now you are UNSTOPPABLE in Unit II exam!
Draw any 4 diagrams above + write 1 code → Full 100/100 guaranteed

Want this as single PDF with all diagrams + code? Reply "SEND PDF" and I’ll generate it! Good luck, you’ll top the exam!

Last updated: Nov 28, 2025