Deep Learning with PyTorch: Complete Mastery (2025 Edition)
From Neural Nets to Transformers — Production-Ready DL Goal: Build, train, and deploy state-of-the-art deep learning models using PyTorch — the #1 DL framework in research and industry.
Deep Learning with PyTorch: Complete Mastery (2025 Edition)
Deep Learning with PyTorch: Complete Mastery (2025 Edition)
Deep Learning with PyTorch: Complete Mastery (2025 Edition)
From Neural Nets to Transformers — Production-Ready DL
Goal: Build, train, and deploy state-of-the-art deep learning models using PyTorch — the #1 DL framework in research and industry.
Why PyTorch?
- Dominates AI Research: 80% of CVPR/ICML papers use PyTorch
- Dynamic Computation Graph: Debug like NumPy, scale like TensorFlow
- Production Ready: TorchServe, ONNX, PyTorch Lightning, Hugging Face
- Salary Impact: DL Engineers earn $150K–$300K+
- 2025 Trends: Multimodal, Efficient Training, Federated Learning
PyTorch Roadmap (6 Months, 2025)
| Month | Focus | Key Skills | Resources |
|---|---|---|---|
| 1 | PyTorch Fundamentals | Tensors, Autograd, NN Module | Official Tutorial, DeepLearning.AI |
| 2 | CNNs & Computer Vision | ResNet, Transfer Learning, Segmentation | FastAI, Stanford CS231n |
| 3 | RNNs, LSTMs, Transformers | Seq2Seq, BERT, GPT | Hugging Face Course |
| 4 | Advanced Architectures | GANs, Diffusion, ViTs | Made With ML |
| 5 | MLOps & Deployment | TorchServe, ONNX, Lightning | PyTorch Lightning |
| 6 | Capstone: Custom Model from Scratch | Full pipeline + deployment | Kaggle, Hugging Face Spaces |
PyTorch Core Concepts (Week 1–2)
1. Tensors — The Building Block
import torch
# Create tensors
x = torch.randn(3, 4) # Random
y = torch.ones(3, 4, dtype=torch.float32)
z = torch.tensor([[1, 2], [3, 4]])
# Operations
x + y, x @ y.T, x.mean(), x.to('cuda') # GPU!
2. Autograd — Automatic Differentiation
x = torch.tensor(2.0, requires_grad=True)
y = x ** 2 + 3 * x
y.backward() # dy/dx = 2x + 3
print(x.grad) # tensor(7.)
3. nn.Module — Your Model Blueprint
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net()
4. Training Loop
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
for epoch in range(10):
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print(f"Epoch {epoch}, Loss: {loss.item():.4f}")
Computer Vision with CNNs (Month 2)
Build ResNet from Scratch
class BasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, stride, 1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
identity = x
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += identity
return F.relu(out)
Transfer Learning (Fine-tuning)
from torchvision import models
model = models.resnet50(pretrained=True)
for param in model.parameters():
param.requires_grad = False # Freeze
# Replace final layer
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, num_classes)
# Train only classifier
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
Project:
Kaggle: Dogs vs Cats → 99.5% accuracy using
efficientnet-b0+ TTA
NLP with Transformers (Month 3)
Load BERT with Hugging Face
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
inputs = tokenizer("I love PyTorch!", return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
Fine-tune on Custom Dataset
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=16,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_dir='./logs',
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
)
trainer.train()
Project:
IMDB Sentiment → 94% accuracy with
distilbert-base-uncased
Advanced Architectures (Month 4)
| Architecture | Use Case | Key Paper |
|---|---|---|
| GANs | Image generation | Goodfellow et al., 2014 |
| Diffusion Models | Stable Diffusion | Ho et al., 2020 |
| Vision Transformers (ViT) | Image classification | Dosovitskiy et al., 2020 |
| EfficientNet | Mobile efficiency | Tan & Le, 2019 |
Simple GAN
class Generator(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(100, 256),
nn.ReLU(),
nn.Linear(256, 784),
nn.Tanh()
)
def forward(self, z):
return self.model(z).view(-1, 1, 28, 28)
# Train G and D alternately
MLOps & Deployment (Month 5)
PyTorch Lightning (Clean Training)
import pytorch_lightning as pl
class LitModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.model = Net()
self.criterion = nn.CrossEntropyLoss()
def training_step(self, batch, batch_idx):
x, y = batch
logits = self.model(x)
loss = self.criterion(logits, y)
self.log('train_loss', loss)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=1e-3)
trainer = pl.Trainer(max_epochs=10, gpus=1)
trainer.fit(model, train_loader)
Deploy with TorchServe
torch-model-archiver --model-name mnist \
--version 1.0 \
--serialized-file model.pth \
--handler custom_handler.py
torchserve --start --model-store model_store --models mnist=mnist.mar
API Test:
curl http://localhost:8080/predictions/mnist -T image.jpg
Capstone: Build & Deploy Custom Model
Project: "Sign Language Recognition"
Dataset: Kaggle Sign Language MNIST
Model: CNN + Attention
Deployment: Hugging Face Space + Gradio UI
# app.py (Gradio)
import gradio as gr
import torch
model = torch.load("sign_language.pt")
model.eval()
def predict(image):
tensor = transform(image).unsqueeze(0)
with torch.no_grad():
pred = model(tensor).argmax(1).item()
return f"Sign: {chr(65 + pred)}"
interface = gr.Interface(fn=predict, inputs="image", outputs="text")
interface.launch()
Live Demo: huggingface.co/spaces/yourname/sign-lang
Portfolio Deliverables
| Project | Tech | Link |
|---|---|---|
| MNIST CNN | PyTorch | GitHub |
| BERT Sentiment | Transformers | Colab |
| Stable Diffusion | Diffusers | Hugging Face |
| Sign Language App | Gradio + HF | Live |
Interview Questions (Solve Live!)
| Question | Your Answer |
|---|---|
| "What is Autograd?" | Reverse-mode diff, dynamic graph |
| "Why ReLU > Sigmoid?" | No vanishing gradient |
| "How does Attention work?" | Q, K, V → scaled dot-product |
| "BatchNorm vs LayerNorm?" | BN: per-batch, LN: per-sample |
| "Deploy PyTorch model?" | TorchScript → ONNX → Triton |
Free Resources Summary
| Resource | Link |
|---|---|
| PyTorch Official | pytorch.org/tutorials |
| Hugging Face NLP | huggingface.co/course |
| FastAI | course.fast.ai |
| PyTorch Lightning | pytorch-lightning.readthedocs.io |
| Stanford CS231n | cs231n.stanford.edu |
| Made With ML | madewithml.com |
Pro Tips
- Use
torch.compile()(PyTorch 2.0+) → 2x speedup - Mixed Precision →
torch.cuda.amp - Log with Weights & Biases →
wandb.init() - Contribute to GitHub → fix bugs in
torchvision - Write blogs → "How I fine-tuned BERT in 10 lines"
Final Checklist
| Task | Done? |
|---|---|
| Train CNN from scratch | ☐ |
| Fine-tune BERT | ☐ |
| Build GAN | ☐ |
| Deploy with TorchServe | ☐ |
| Live Gradio app | ☐ |
All Yes → You’re a Deep Learning Engineer!
Next: Advanced ML & MLOps
You can train models → now scale & monitor them.
Start Now:
pip install torch torchvision torchaudio
python -c "import torch; print(torch.cuda.is_available())"
Tag me when you deploy your first model!
You now build the future of AI.
Deep Learning with PyTorch: Complete Mastery (2025 Edition)
From Neural Nets to Transformers — Production-Ready DL Goal: Build, train, and deploy state-of-the-art deep learning models using PyTorch — the #1 DL framework in research and industry.
Deep Learning with PyTorch: Complete Mastery (2025 Edition)
Deep Learning with PyTorch: Complete Mastery (2025 Edition)
Deep Learning with PyTorch: Complete Mastery (2025 Edition)
From Neural Nets to Transformers — Production-Ready DL
Goal: Build, train, and deploy state-of-the-art deep learning models using PyTorch — the #1 DL framework in research and industry.
Why PyTorch?
- Dominates AI Research: 80% of CVPR/ICML papers use PyTorch
- Dynamic Computation Graph: Debug like NumPy, scale like TensorFlow
- Production Ready: TorchServe, ONNX, PyTorch Lightning, Hugging Face
- Salary Impact: DL Engineers earn $150K–$300K+
- 2025 Trends: Multimodal, Efficient Training, Federated Learning
PyTorch Roadmap (6 Months, 2025)
| Month | Focus | Key Skills | Resources |
|---|---|---|---|
| 1 | PyTorch Fundamentals | Tensors, Autograd, NN Module | Official Tutorial, DeepLearning.AI |
| 2 | CNNs & Computer Vision | ResNet, Transfer Learning, Segmentation | FastAI, Stanford CS231n |
| 3 | RNNs, LSTMs, Transformers | Seq2Seq, BERT, GPT | Hugging Face Course |
| 4 | Advanced Architectures | GANs, Diffusion, ViTs | Made With ML |
| 5 | MLOps & Deployment | TorchServe, ONNX, Lightning | PyTorch Lightning |
| 6 | Capstone: Custom Model from Scratch | Full pipeline + deployment | Kaggle, Hugging Face Spaces |
PyTorch Core Concepts (Week 1–2)
1. Tensors — The Building Block
import torch
# Create tensors
x = torch.randn(3, 4) # Random
y = torch.ones(3, 4, dtype=torch.float32)
z = torch.tensor([[1, 2], [3, 4]])
# Operations
x + y, x @ y.T, x.mean(), x.to('cuda') # GPU!
2. Autograd — Automatic Differentiation
x = torch.tensor(2.0, requires_grad=True)
y = x ** 2 + 3 * x
y.backward() # dy/dx = 2x + 3
print(x.grad) # tensor(7.)
3. nn.Module — Your Model Blueprint
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net()
4. Training Loop
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
for epoch in range(10):
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print(f"Epoch {epoch}, Loss: {loss.item():.4f}")
Computer Vision with CNNs (Month 2)
Build ResNet from Scratch
class BasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, stride, 1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
identity = x
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += identity
return F.relu(out)
Transfer Learning (Fine-tuning)
from torchvision import models
model = models.resnet50(pretrained=True)
for param in model.parameters():
param.requires_grad = False # Freeze
# Replace final layer
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, num_classes)
# Train only classifier
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
Project:
Kaggle: Dogs vs Cats → 99.5% accuracy using
efficientnet-b0+ TTA
NLP with Transformers (Month 3)
Load BERT with Hugging Face
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
inputs = tokenizer("I love PyTorch!", return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
Fine-tune on Custom Dataset
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=16,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_dir='./logs',
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
)
trainer.train()
Project:
IMDB Sentiment → 94% accuracy with
distilbert-base-uncased
Advanced Architectures (Month 4)
| Architecture | Use Case | Key Paper |
|---|---|---|
| GANs | Image generation | Goodfellow et al., 2014 |
| Diffusion Models | Stable Diffusion | Ho et al., 2020 |
| Vision Transformers (ViT) | Image classification | Dosovitskiy et al., 2020 |
| EfficientNet | Mobile efficiency | Tan & Le, 2019 |
Simple GAN
class Generator(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(100, 256),
nn.ReLU(),
nn.Linear(256, 784),
nn.Tanh()
)
def forward(self, z):
return self.model(z).view(-1, 1, 28, 28)
# Train G and D alternately
MLOps & Deployment (Month 5)
PyTorch Lightning (Clean Training)
import pytorch_lightning as pl
class LitModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.model = Net()
self.criterion = nn.CrossEntropyLoss()
def training_step(self, batch, batch_idx):
x, y = batch
logits = self.model(x)
loss = self.criterion(logits, y)
self.log('train_loss', loss)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=1e-3)
trainer = pl.Trainer(max_epochs=10, gpus=1)
trainer.fit(model, train_loader)
Deploy with TorchServe
torch-model-archiver --model-name mnist \
--version 1.0 \
--serialized-file model.pth \
--handler custom_handler.py
torchserve --start --model-store model_store --models mnist=mnist.mar
API Test:
curl http://localhost:8080/predictions/mnist -T image.jpg
Capstone: Build & Deploy Custom Model
Project: "Sign Language Recognition"
Dataset: Kaggle Sign Language MNIST
Model: CNN + Attention
Deployment: Hugging Face Space + Gradio UI
# app.py (Gradio)
import gradio as gr
import torch
model = torch.load("sign_language.pt")
model.eval()
def predict(image):
tensor = transform(image).unsqueeze(0)
with torch.no_grad():
pred = model(tensor).argmax(1).item()
return f"Sign: {chr(65 + pred)}"
interface = gr.Interface(fn=predict, inputs="image", outputs="text")
interface.launch()
Live Demo: huggingface.co/spaces/yourname/sign-lang
Portfolio Deliverables
| Project | Tech | Link |
|---|---|---|
| MNIST CNN | PyTorch | GitHub |
| BERT Sentiment | Transformers | Colab |
| Stable Diffusion | Diffusers | Hugging Face |
| Sign Language App | Gradio + HF | Live |
Interview Questions (Solve Live!)
| Question | Your Answer |
|---|---|
| "What is Autograd?" | Reverse-mode diff, dynamic graph |
| "Why ReLU > Sigmoid?" | No vanishing gradient |
| "How does Attention work?" | Q, K, V → scaled dot-product |
| "BatchNorm vs LayerNorm?" | BN: per-batch, LN: per-sample |
| "Deploy PyTorch model?" | TorchScript → ONNX → Triton |
Free Resources Summary
| Resource | Link |
|---|---|
| PyTorch Official | pytorch.org/tutorials |
| Hugging Face NLP | huggingface.co/course |
| FastAI | course.fast.ai |
| PyTorch Lightning | pytorch-lightning.readthedocs.io |
| Stanford CS231n | cs231n.stanford.edu |
| Made With ML | madewithml.com |
Pro Tips
- Use
torch.compile()(PyTorch 2.0+) → 2x speedup - Mixed Precision →
torch.cuda.amp - Log with Weights & Biases →
wandb.init() - Contribute to GitHub → fix bugs in
torchvision - Write blogs → "How I fine-tuned BERT in 10 lines"
Final Checklist
| Task | Done? |
|---|---|
| Train CNN from scratch | ☐ |
| Fine-tune BERT | ☐ |
| Build GAN | ☐ |
| Deploy with TorchServe | ☐ |
| Live Gradio app | ☐ |
All Yes → You’re a Deep Learning Engineer!
Next: Advanced ML & MLOps
You can train models → now scale & monitor them.
Start Now:
pip install torch torchvision torchaudio
python -c "import torch; print(torch.cuda.is_available())"
Tag me when you deploy your first model!
You now build the future of AI.