PyTorch Lightning Deep Dive (2025 Edition)
From Research to Production: Scale Deep Learning Like a Pro Goal: Master PyTorch Lightning — the #1 framework for clean, scalable, and production-ready deep learning.
PyTorch Lightning Deep Dive (2025 Edition)
PyTorch Lightning Deep Dive (2025 Edition)
PyTorch Lightning Deep Dive (2025 Edition)
From Research to Production: Scale Deep Learning Like a Pro
Goal: Master PyTorch Lightning — the #1 framework for clean, scalable, and production-ready deep learning.
Why Lightning?
- Removes 90% boilerplate → Focus on research, notforloops
- Used by 70% of top AI labs (Meta, NVIDIA, Hugging Face)
- Built-in: Multi-GPU, TPU, mixed precision, logging, callbacks
- 2025 Features:Trainer(strategy="fsdp"),Lightning Fabric,TorchCompileintegration
- Salary Impact: +30K for "Lightning + MLOps" on resume
PyTorch Lightning Roadmap (3 Months)
| Week | Focus | Key Skills |
|---|---|---|
| 1 | Core Concepts & First Model | LightningModule, Trainer |
| 2 | Callbacks & Logging | Early stopping, WandB, ModelCheckpoint |
| 3 | Multi-GPU & Mixed Precision | DDP, FSDP, torch.compile |
| 4 | Advanced Training | LoRA, Quantization, Fabric |
| 5 | Testing & CI/CD | pytest, GitHub Actions |
| 6 | Capstone: BERT Fine-Tuning @ Scale | 8x GPU, 10M+ samples |
Core Concepts: LightningModule vs Raw PyTorch
| Raw PyTorch | Lightning |
|---|---|
| 50+ lines of training loop | 5 lines with Trainer |
Manual zero_grad, backward, step |
Automatic |
if gpu: model.cuda() |
Trainer(devices=4) |
torch.save(model.state_dict()) |
ModelCheckpoint |
Your First Lightning Model
import pytorch_lightning as pl
import torch
from torch import nn
import torch.nn.functional as F
class LitMNIST(pl.LightningModule):
def __init__(self, hidden_dim=128, lr=1e-3):
super().__init__()
self.save_hyperparameters()
self.l1 = nn.Linear(28 * 28, self.hparams.hidden_dim)
self.l2 = nn.Linear(self.hparams.hidden_dim, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = F.relu(self.l1(x))
return self.l2(x)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.cross_entropy(logits, y)
self.log("train_loss", loss, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.cross_entropy(logits, y)
acc = (logits.argmax(1) == y).float().mean()
self.log("val_loss", loss, prog_bar=True)
self.log("val_acc", acc, prog_bar=True)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
Train with 1 Line
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
transform = transforms.Compose([transforms.ToTensor()])
train_ds = datasets.MNIST(".", train=True, download=True, transform=transform)
val_ds = datasets.MNIST(".", train=False, transform=transform)
train_loader = DataLoader(train_ds, batch_size=128, num_workers=4)
val_loader = DataLoader(val_ds, batch_size=128, num_workers=4)
model = LitMNIST()
trainer = pl.Trainer(
max_epochs=10,
accelerator="gpu" if torch.cuda.is_available() else "cpu",
devices=1,
log_every_n_steps=10
)
trainer.fit(model, train_loader, val_loader)
Callbacks & Logging (Week 2)
Essential Callbacks
from pytorch_lightning.callbacks import (
EarlyStopping, ModelCheckpoint, LearningRateMonitor
)
callbacks = [
ModelCheckpoint(
save_top_k=1,
monitor="val_acc",
mode="max",
filename="best-{epoch:02d}-{val_acc:.3f}"
),
EarlyStopping(monitor="val_loss", patience=3, mode="min"),
LearningRateMonitor(logging_interval="step")
]
WandB Logging
import wandb
from pytorch_lightning.loggers import WandbLogger
wandb.login()
logger = WandbLogger(project="mnist-lightning", name="exp-1")
trainer = pl.Trainer(logger=logger, callbacks=callbacks)
Multi-GPU & Mixed Precision (Week 3)
Train on 8 GPUs with DDP
trainer = pl.Trainer(
strategy="ddp", # Distributed Data Parallel
accelerator="gpu",
devices=8,
precision=16, # Mixed precision (FP16)
max_epochs=50
)
2025: FSDP (Fully Sharded Data Parallel)
trainer = pl.Trainer(
strategy="fsdp", # Shards model across GPUs
accelerator="gpu",
devices=8,
precision="bf16-mixed" # BFloat16
)
TorchCompile (2.0+) — 2x Speed
model = torch.compile(model) # Before trainer.fit()
Advanced Training (Week 4)
LoRA (Low-Rank Adaptation)
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(r=8, lora_alpha=32, target_modules=["q", "v"])
model = get_peft_model(model, lora_config)
Quantization (INT8)
import torch.quantization
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
model = torch.quantization.prepare(model)
# Calibrate, then:
model = torch.quantization.convert(model)
Lightning Fabric (No Trainer)
from lightning.fabric import Fabric
fabric = Fabric(accelerator="gpu", devices=4, strategy="ddp")
fabric.launch()
model, optimizer = fabric.setup(model, optimizer)
dataloader = fabric.setup_dataloaders(dataloader)
for batch in dataloader:
output = model(batch)
loss = loss_fn(output, batch)
fabric.backward(loss)
optimizer.step()
optimizer.zero_grad()
Testing & CI/CD (Week 5)
Unit Tests
def test_model_output_shape():
model = LitMNIST()
x = torch.randn(1, 1, 28, 28)
out = model(x)
assert out.shape == (1, 10)
GitHub Actions
name: CI
on: [push]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install
run: pip install -r requirements.txt
- name: Test
run: pytest tests/
Capstone: BERT @ Scale with Lightning
Project: "Tweet Sentiment @ 10M Scale"
Dataset: 10M tweets (Kaggle + synthetic)
Model:bert-base-uncased+ LoRA
Hardware: 8x A100 (via RunPod/Colab Pro)
Goal: 92% accuracy, <4h training
from transformers import AutoTokenizer
from lightning.pytorch import LightningDataModule
class TweetDataModule(LightningDataModule):
def __init__(self, batch_size=32):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
self.batch_size = batch_size
def setup(self, stage):
# Load 10M tweets
pass
def train_dataloader(self):
return DataLoader(..., batch_size=self.batch_size, num_workers=8)
trainer = pl.Trainer(
strategy="fsdp",
accelerator="gpu",
devices=8,
precision="bf16-mixed",
max_epochs=3,
accumulate_grad_batches=4,
logger=WandbLogger(project="tweet-sentiment"),
callbacks=[ModelCheckpoint(monitor="val_acc", mode="max")]
)
trainer.fit(model, datamodule)
Deploy:
# Export to ONNX
torch.onnx.export(model, dummy_input, "bert_sentiment.onnx")
Portfolio Deliverables
| Project | Tech | Link |
|---|---|---|
| MNIST Lightning | Callbacks, WandB | GitHub |
| BERT LoRA | FSDP, 8x GPU | WandB Report |
| Quantized ViT | INT8, TorchServe | HF Space |
| CI/CD Pipeline | GitHub Actions | Live |
Interview Questions (Solve in 5 Mins)
| Question | Answer |
|---|---|
| "Lightning vs Raw PyTorch?" | Less code, scalable, production-ready |
"What is strategy='ddp'?" |
Syncs gradients across GPUs |
| "How to debug NaN loss?" | GradientClip, DetectAnomaly |
| "FSDP vs DDP?" | FSDP shards model → fits 70B on 8 GPUs |
| "Deploy Lightning model?" | TorchScript → TorchServe |
Free Resources Summary
| Resource | Link |
|---|---|
| Lightning Docs | lightning.ai/docs |
| Lightning YouTube | youtube.com/@PyTorchLightning |
| WandB Integration | docs.wandb.ai/guides/integrations/lightning |
| PEFT (LoRA) | huggingface.co/docs/peft |
| RunPod | runpod.io (cheap 8x A100) |
Pro Tips
- Use
self.log()everywhere → WandB auto-plots - Never write training loops → Let
Trainerhandle it - Profile with
Trainer(profile=True) - Contribute → Fix a Lightning GitHub issue
- Resume:
"Scaled BERT training to 8x A100 using PyTorch Lightning + FSDP, reducing cost 60%"
Final Checklist
| Task | Done? |
|---|---|
Train with Trainer |
☐ |
| Use 3+ callbacks | ☐ |
| Multi-GPU DDP | ☐ |
| LoRA + FSDP | ☐ |
| Deploy to TorchServe | ☐ |
All Yes → You’re a Lightning Pro!
Next: MLOps & Production
You can train at scale → now monitor in production.
Start Now:
pip install lightning wandb peft
import pytorch_lightning as pl
print(pl.__version__) # 2.2+
Tag me when you train on 8 GPUs!
You now scale AI like Meta.
PyTorch Lightning Deep Dive (2025 Edition)
From Research to Production: Scale Deep Learning Like a Pro Goal: Master PyTorch Lightning — the #1 framework for clean, scalable, and production-ready deep learning.
PyTorch Lightning Deep Dive (2025 Edition)
PyTorch Lightning Deep Dive (2025 Edition)
PyTorch Lightning Deep Dive (2025 Edition)
From Research to Production: Scale Deep Learning Like a Pro
Goal: Master PyTorch Lightning — the #1 framework for clean, scalable, and production-ready deep learning.
Why Lightning?
- Removes 90% boilerplate → Focus on research, notforloops
- Used by 70% of top AI labs (Meta, NVIDIA, Hugging Face)
- Built-in: Multi-GPU, TPU, mixed precision, logging, callbacks
- 2025 Features:Trainer(strategy="fsdp"),Lightning Fabric,TorchCompileintegration
- Salary Impact: +30K for "Lightning + MLOps" on resume
PyTorch Lightning Roadmap (3 Months)
| Week | Focus | Key Skills |
|---|---|---|
| 1 | Core Concepts & First Model | LightningModule, Trainer |
| 2 | Callbacks & Logging | Early stopping, WandB, ModelCheckpoint |
| 3 | Multi-GPU & Mixed Precision | DDP, FSDP, torch.compile |
| 4 | Advanced Training | LoRA, Quantization, Fabric |
| 5 | Testing & CI/CD | pytest, GitHub Actions |
| 6 | Capstone: BERT Fine-Tuning @ Scale | 8x GPU, 10M+ samples |
Core Concepts: LightningModule vs Raw PyTorch
| Raw PyTorch | Lightning |
|---|---|
| 50+ lines of training loop | 5 lines with Trainer |
Manual zero_grad, backward, step |
Automatic |
if gpu: model.cuda() |
Trainer(devices=4) |
torch.save(model.state_dict()) |
ModelCheckpoint |
Your First Lightning Model
import pytorch_lightning as pl
import torch
from torch import nn
import torch.nn.functional as F
class LitMNIST(pl.LightningModule):
def __init__(self, hidden_dim=128, lr=1e-3):
super().__init__()
self.save_hyperparameters()
self.l1 = nn.Linear(28 * 28, self.hparams.hidden_dim)
self.l2 = nn.Linear(self.hparams.hidden_dim, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = F.relu(self.l1(x))
return self.l2(x)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.cross_entropy(logits, y)
self.log("train_loss", loss, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.cross_entropy(logits, y)
acc = (logits.argmax(1) == y).float().mean()
self.log("val_loss", loss, prog_bar=True)
self.log("val_acc", acc, prog_bar=True)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
Train with 1 Line
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
transform = transforms.Compose([transforms.ToTensor()])
train_ds = datasets.MNIST(".", train=True, download=True, transform=transform)
val_ds = datasets.MNIST(".", train=False, transform=transform)
train_loader = DataLoader(train_ds, batch_size=128, num_workers=4)
val_loader = DataLoader(val_ds, batch_size=128, num_workers=4)
model = LitMNIST()
trainer = pl.Trainer(
max_epochs=10,
accelerator="gpu" if torch.cuda.is_available() else "cpu",
devices=1,
log_every_n_steps=10
)
trainer.fit(model, train_loader, val_loader)
Callbacks & Logging (Week 2)
Essential Callbacks
from pytorch_lightning.callbacks import (
EarlyStopping, ModelCheckpoint, LearningRateMonitor
)
callbacks = [
ModelCheckpoint(
save_top_k=1,
monitor="val_acc",
mode="max",
filename="best-{epoch:02d}-{val_acc:.3f}"
),
EarlyStopping(monitor="val_loss", patience=3, mode="min"),
LearningRateMonitor(logging_interval="step")
]
WandB Logging
import wandb
from pytorch_lightning.loggers import WandbLogger
wandb.login()
logger = WandbLogger(project="mnist-lightning", name="exp-1")
trainer = pl.Trainer(logger=logger, callbacks=callbacks)
Multi-GPU & Mixed Precision (Week 3)
Train on 8 GPUs with DDP
trainer = pl.Trainer(
strategy="ddp", # Distributed Data Parallel
accelerator="gpu",
devices=8,
precision=16, # Mixed precision (FP16)
max_epochs=50
)
2025: FSDP (Fully Sharded Data Parallel)
trainer = pl.Trainer(
strategy="fsdp", # Shards model across GPUs
accelerator="gpu",
devices=8,
precision="bf16-mixed" # BFloat16
)
TorchCompile (2.0+) — 2x Speed
model = torch.compile(model) # Before trainer.fit()
Advanced Training (Week 4)
LoRA (Low-Rank Adaptation)
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(r=8, lora_alpha=32, target_modules=["q", "v"])
model = get_peft_model(model, lora_config)
Quantization (INT8)
import torch.quantization
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
model = torch.quantization.prepare(model)
# Calibrate, then:
model = torch.quantization.convert(model)
Lightning Fabric (No Trainer)
from lightning.fabric import Fabric
fabric = Fabric(accelerator="gpu", devices=4, strategy="ddp")
fabric.launch()
model, optimizer = fabric.setup(model, optimizer)
dataloader = fabric.setup_dataloaders(dataloader)
for batch in dataloader:
output = model(batch)
loss = loss_fn(output, batch)
fabric.backward(loss)
optimizer.step()
optimizer.zero_grad()
Testing & CI/CD (Week 5)
Unit Tests
def test_model_output_shape():
model = LitMNIST()
x = torch.randn(1, 1, 28, 28)
out = model(x)
assert out.shape == (1, 10)
GitHub Actions
name: CI
on: [push]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install
run: pip install -r requirements.txt
- name: Test
run: pytest tests/
Capstone: BERT @ Scale with Lightning
Project: "Tweet Sentiment @ 10M Scale"
Dataset: 10M tweets (Kaggle + synthetic)
Model:bert-base-uncased+ LoRA
Hardware: 8x A100 (via RunPod/Colab Pro)
Goal: 92% accuracy, <4h training
from transformers import AutoTokenizer
from lightning.pytorch import LightningDataModule
class TweetDataModule(LightningDataModule):
def __init__(self, batch_size=32):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
self.batch_size = batch_size
def setup(self, stage):
# Load 10M tweets
pass
def train_dataloader(self):
return DataLoader(..., batch_size=self.batch_size, num_workers=8)
trainer = pl.Trainer(
strategy="fsdp",
accelerator="gpu",
devices=8,
precision="bf16-mixed",
max_epochs=3,
accumulate_grad_batches=4,
logger=WandbLogger(project="tweet-sentiment"),
callbacks=[ModelCheckpoint(monitor="val_acc", mode="max")]
)
trainer.fit(model, datamodule)
Deploy:
# Export to ONNX
torch.onnx.export(model, dummy_input, "bert_sentiment.onnx")
Portfolio Deliverables
| Project | Tech | Link |
|---|---|---|
| MNIST Lightning | Callbacks, WandB | GitHub |
| BERT LoRA | FSDP, 8x GPU | WandB Report |
| Quantized ViT | INT8, TorchServe | HF Space |
| CI/CD Pipeline | GitHub Actions | Live |
Interview Questions (Solve in 5 Mins)
| Question | Answer |
|---|---|
| "Lightning vs Raw PyTorch?" | Less code, scalable, production-ready |
"What is strategy='ddp'?" |
Syncs gradients across GPUs |
| "How to debug NaN loss?" | GradientClip, DetectAnomaly |
| "FSDP vs DDP?" | FSDP shards model → fits 70B on 8 GPUs |
| "Deploy Lightning model?" | TorchScript → TorchServe |
Free Resources Summary
| Resource | Link |
|---|---|
| Lightning Docs | lightning.ai/docs |
| Lightning YouTube | youtube.com/@PyTorchLightning |
| WandB Integration | docs.wandb.ai/guides/integrations/lightning |
| PEFT (LoRA) | huggingface.co/docs/peft |
| RunPod | runpod.io (cheap 8x A100) |
Pro Tips
- Use
self.log()everywhere → WandB auto-plots - Never write training loops → Let
Trainerhandle it - Profile with
Trainer(profile=True) - Contribute → Fix a Lightning GitHub issue
- Resume:
"Scaled BERT training to 8x A100 using PyTorch Lightning + FSDP, reducing cost 60%"
Final Checklist
| Task | Done? |
|---|---|
Train with Trainer |
☐ |
| Use 3+ callbacks | ☐ |
| Multi-GPU DDP | ☐ |
| LoRA + FSDP | ☐ |
| Deploy to TorchServe | ☐ |
All Yes → You’re a Lightning Pro!
Next: MLOps & Production
You can train at scale → now monitor in production.
Start Now:
pip install lightning wandb peft
import pytorch_lightning as pl
print(pl.__version__) # 2.2+
Tag me when you train on 8 GPUs!
You now scale AI like Meta.